Su Suntan A Bad Capacitor Story Ends Happily

January 31, 2009 Views
Comments 0

Suntan Technology Company Limited
---All kinds of Capacitors

I worked as a design engineer for an optical-telecom company that had deployed 1000 pieces of equipment worldwide. Having so many modules in the field means a trickle of returns, and it was my job to investigate the failures. One investigation taught me a wonderful lesson.

I received a module whose source of failure was easily identifiable: a charred tantalum capacitor. It failed short, making the whole multithousand-dollar module nonoperational. This surface-mount capacitor—with a 7343 footprint and 20V rating—was sitting on a 12V-dc plane. This failure rate of one capacitor in about 10,000 pieces in this time span was well below the statistical prediction. I took a picture of the fallen capacitor and considered the case closed.

In a few weeks, a customer returned a similar module with a charred and shorted capacitor in the same location. Even including this case, the failure rate was still below statistical prediction. I knew there were five more identical capacitors on the board, sitting in parallel on the same 12V-dc plane. In addition to the module's failure rate, I now had a one-in-six chance with the capacitors. So, I took another picture. I wrote a report to calm upper management, but I had a feeling that I'd better study reliability calculation in general and reliability for tantalum capacitors in particular, and the faster, the better.

In another few weeks, I received another failed module. The same capacitor looked bad. I had by now done my studying and could intimidate other people by saying long and complicated sentences about reliability, but why was it always the same capacitor? Overvoltage? Spikes? No way. The same plane contained plenty of sensitive stuff that would fry well before the capacitor even felt it. Having nothing better, I clung to the theory of excessive ripple current.

The idea of a temperature rise due to ripple current causing the failure gained traction when all three photos of the fallen capacitors revealed a common condition: almost no solder on each negative terminal. The electrical connection was still good, but there was little solder. The capacitor's positive terminal was fine with a fair amount of curvature-profiled solder. I started to promote the idea that the lack of solder had caused impeded thermal contact, but it was only wishful thinking. I calculated the worst ripple current: 10% of the maximum rating. On an operational board, I got less than 5%.

I had already dismissed other ideas—from excessive humidity to airflow turbulence. Suddenly, the picture of the layout popped up in my mind. The layout sections for the five good capacitors were identical: Vias were close to both terminals going down to an internal layer. The bad capacitor had a via at the positive terminal, but, at the negative end, there was a heavy trace going inside the footprint, beneath the capacitor, and only then outside. That's when I knew how to fit together all the pieces of the puzzle.

On the positive terminal, the solder stayed where it was supposed to, clinching the terminal to the PCB (printed-circuit board). On the negative side, however, during assembly, the melted solder drifted under the capacitor and solidified, lifting the negative end and bending the capacitor just enough to create a microcrack—a capacitor's well-known nemesis. I never felt as much excitement writing a technical report as I did the next day.

Su Suntan Capacitor History

January 13, 2009 Views
Comments 5

Suntan Technology Company Limited
---All Kinds of Capacitors

In October 1745, Ewald Georg von Kleist of Pomerania in Germany found that charge could be stored by connecting a generator by a wire to a volume of water in a hand-held glass jar. Von Kleist's hand and the water acted as conductors and the jar as a dielectric. Von Kleist found that after removing the generator, touching the wire resulted in a spark. In a letter describing the experiment, he said "I would not take a second shock for the kingdom of France." The following year, the Dutch physicist Pieter van Musschenbroek invented a similar capacitor, which was named the Leyden jar, after the University of Leyden where he worked. Daniel Gralath was the first to combine several jars in parallel into a "battery" to increase the charge storage capacity.

Benjamin Franklin investigated the Leyden jar, and proved that the charge was stored on the glass, not in the water as others had assumed Leyden jars began to be made by coating the inside and outside of jars with metal foil, leaving a space at the mouth to prevent arcing between the foils. The earliest unit of capacitance was the 'jar', equivalent to about 1 nanofarad.

Leyden jar or flat glass plate construction was used exclusively up until about 1900, when the invention of wireless (radio) created a demand for standard capacitors, and the steady move to higher frequencies required capacitors with lower inductance. A more compact construction began to be used of a flexible dielectric sheet such as oiled paper sandwiched between sheets of metal foil, rolled or folded into a small package.

Early capacitors were also known as condensers, a term that is still occasionally used today. It was coined by Alessandro Volta in 1782 (derived from the Italian condensatore), with reference to the device's ability to store a higher density of electric charge than a normal isolated conductor. Most non-English European languages still use a word derived from "condensatore".
Learn more:http://www.suntan.com.hk/

分页:[«][10][11][12][13][14][15][16][17][18][19][20][21][22][23]24[»]